

This article was downloaded by:

On: 30 January 2011

Access details: *Access Details: Free Access*

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Spectroscopy Letters

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713597299>

The Mass Spectral Behavior of Hydroxyaryldiarylacetic Acid Lactones

Thomas N. Oeltmann^a; David H. Kramer^b; Joseph Webber^a; Lester Daasch^a; Francis M. Miller^{ab}

^a Research Laboratories Edgewood Arsenal, Maryland ^b Northern Illinois University DeKalb, Illinois

To cite this Article Oeltmann, Thomas N. , Kramer, David H. , Webber, Joseph , Daasch, Lester and Miller, Francis M.(1970) 'The Mass Spectral Behavior of Hydroxyaryldiarylacetic Acid Lactones', *Spectroscopy Letters*, 3: 2, 43 — 49

To link to this Article: DOI: 10.1080/00387017008075693

URL: <http://dx.doi.org/10.1080/00387017008075693>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

The Mass Spectral Behavior of Hydroxyaryldiarylacetic
Acid Lactones

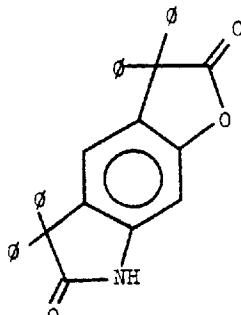
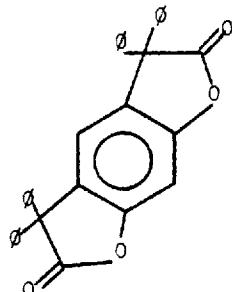
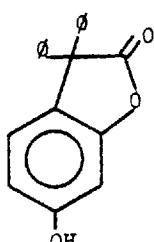
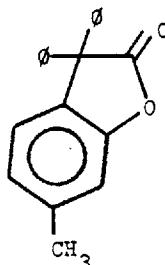
Thomas N. Oeltmann, David N. Kramer, Joseph Webber, Lester Daasch

Research Laboratories
Edgewood Arsenal, Maryland 21010

and

Francis M. Miller

Northern Illinois University
DeKalb, Illinois 60115





During the investigation of the photochemical decarbonylation of aryl lactones¹ as a simple synthesis of *o*-fuchsones of general type 2, both the starting lactones 1 and the photoproducts 2 were examined by mass spectrometry.

Two common features of the fragmentation pattern of all the lactones investigated (Table I) were the initial loss of CO to give a stable (M-28)

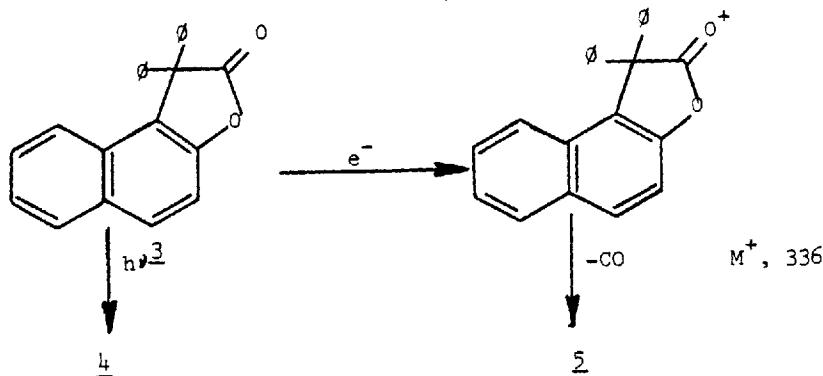
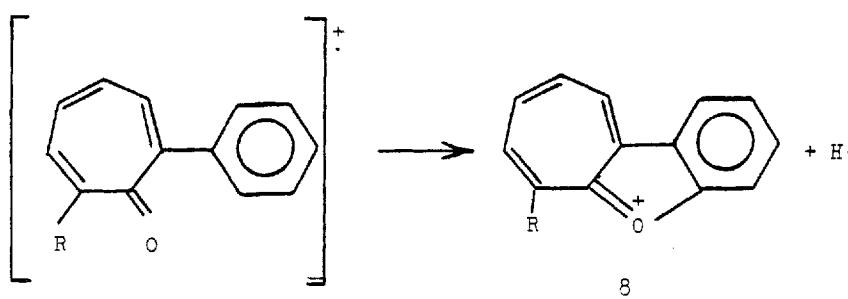
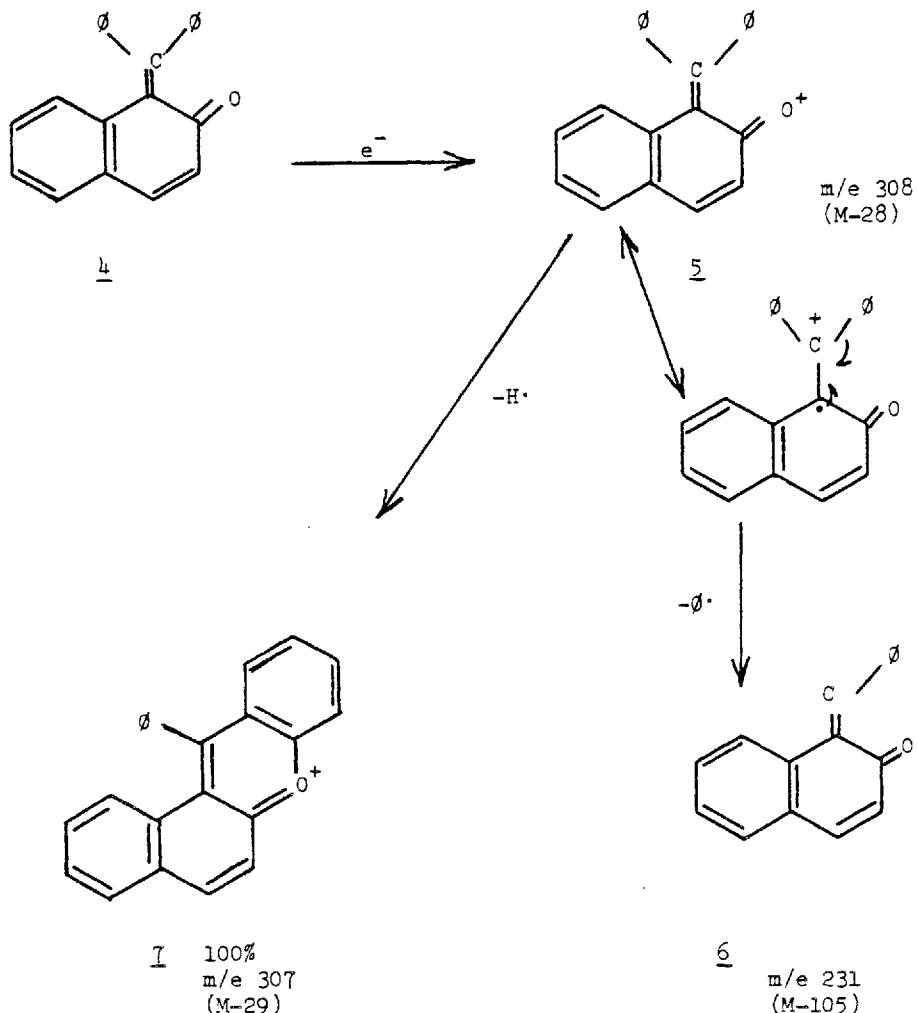

ion, followed either by loss of hydrogen to give the base (M-29) ion, or the production of an (M-105) ion as illustrated in Table II for lactone

Table I



11 mp 258°12 mp 224°13 mp 167°14 mp 125°

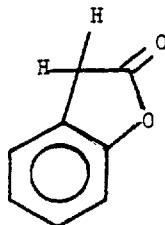
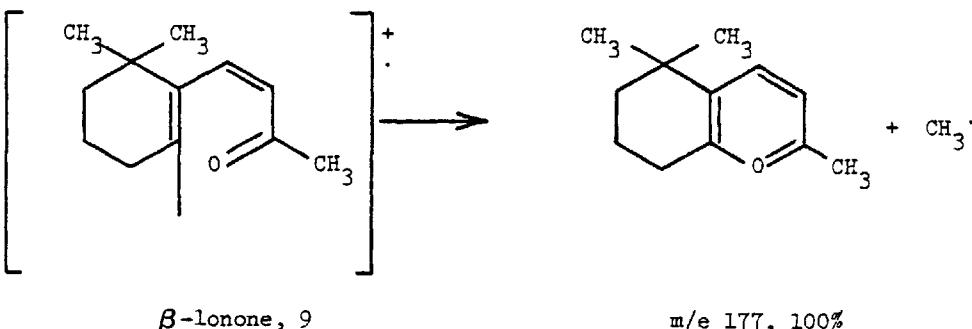


ion, followed either by loss of hydrogen to give the base (M-29) ion, or the production of an (M-105) ion as illustrated in Table II for lactone 3.

Table II

MASS SPECTRAL BEHAVIOR OF ARYL LACTONES

10

The parent ion of 3 loses CO in a manner similar to its photochemical decarbonylation. While the photochemical reaction stops at the fuchsone 4 stage, the corresponding ion 5, from the loss of CO by electron bombardment, fragments further by either loss of phenyl to give the m/e 231 ion 6 or by loss of hydrogen to give a m/e 307 ion 7.

The latter path is pictured as involving an electrophilic attack of the oxygen radical 5 on one of the phenyl rings prior to the loss of a hydrogen atom to form the stable pyrylium ion 7, similar to the pathway leading to the analogous ion 3², or the cyclization of β -ionone 9⁴.

In support of the above fragmentation pattern, metastable ions were observed for the transition 336 to 308 (M* 282.1), 308 to 231 (M* 173.2) and 308 to 307 (M* 306.0).

MASS SPECTRAL BEHAVIOR OF ARYL LACTONES

The mass spectrum of the fuchsone 4, prepared from the lactone 3 by photolysis, was identical to that of 3 at mass numbers lower than (M-28) in the latter spectrum.

An indication that the loss of hydrogen from 5 occurs from one of the two phenyl groups rather than elsewhere in the molecule was inferred by examining the mass spectrum of the simpler lactone 10. In this case, the (M-28) ion fragmented further by losing a second molecule of carbon monoxide similar to the loss of this mass unit from phenols³.

The mass spectra of the lactones 11 and 12 (Table I) contained intense peaks at (M-29) and (M-105). Pathways analogous to those suggested for lactone 3 may be envisioned for the formation of these two fragments.

Experimental

General: All melting points were taken on "uni-melt" capillary melting point apparatus and are uncorrected. Infrared spectra were recorded on a Beckman IR5A spectrophotometer. Ultraviolet spectra were recorded on a Beckman DB spectrophotometer. NMR spectra were taken on a Varian A-60 spectrometer employing approximately 50 mg of sample in 0.5 ml CDCl_3 solutions using 1% TMS as an internal standard. Photolysis were carried out using a long wave length photochemical quartz lamp # SCT-1 supplied by Ultra Violet Products, San Gabriel, California. The kinetics were calculated using a TR 48 Analog Computer, Electronics Associates, Long Branch, New Jersey, using a routine simulation method in which the circuit was wired for a first order equation and the simulated curves fitted to the rate data. The mass spectra were obtained on a CEC 21110 mass spectrometer.

Preparation of Lactone 3: To a cooled solution of 0.05 moles of benzilic acid and 0.05 moles of β -naphthol in 100 ml acetic acid was added dropwise with stirring 30 ml conc. sulfuric acid. The reaction mixture was stirred at room temperature for 30 minutes then poured into 500 ml ice-water. The crude lactone 3 which precipitated was filtered, washed free of acid with water, an

crystallized from ethanol. A recrystallized sample melted at 183° (lit. 18).

The above general method was used for the preparation of all other lactones reported in the text. All lactones reported gave the proper analytical data and the I.R., U.V. and NMR spectra were consistent with the structures shown.

Photolysis of Lactone 3: Irradiation of a 10^{-2} M solution of lactone 3 in acetone for thirty minutes yields o-naphthofuchsone 4 in 20% yield after crystallization from acetic acid. A recrystallized sample melted at 194°, lit. mp 194°⁶.

A series of photochemical kinetic runs (at constant lamp intensity) in acetone⁷ was performed on lactone 3 and a rate constant, $k = 2.93 \times 10^{-3} \text{ min}^{-1}$, was obtained. The rate was followed by measuring the formation of fuchsone 4 spectrophotometrically at 400 $\text{m}\mu$ and 360 $\text{m}\mu$, $= 2,900$ and $9,800$ respectively. Prolonged irradiation revealed a diminution in both the 440 $\text{m}\mu$ and 360 $\text{m}\mu$ absorptions indicative of further photochemical reactions.

The rates of decarbonylation of a number of lactones is reported in Table III.

Table III

Lactone	Decarbonylation Rates*
1-(diphenylacetic acid)-2-naphthol lactone, <u>3</u>	$2.93 \times 10^{-3} \text{ min}^{-1}$
1,5-di(diphenylacetic acid)-2,4-dihydroxy benzene dilacetone, <u>12</u>	$7.6 \times 10^{-3} \text{ min}^{-1}$
1-(diphenylacetic acid)-2,5-dihydroxy benzene lactone, <u>13</u>	$5.92 \times 10^{-3} \text{ min}^{-1}$
6-(diphenylacetic acid)-1-hydroxy-3-methyl benzene lactone, <u>14</u>	very slow

*All decarbonylations were carried out in acetone⁷.

MASS SPECTRAL BEHAVIOR OF ARYL LACTONES

References

1. A. Yoge^v and Y. Mazur, J. Am. Chem. Soc., 87, 15 (1965).
2. J. M. Wilson, M. Ohashi, H. Budwikiewicz, C. Djerassi, Tetrahedron, 19, 2247 (1963).
3. J. H. Beynan, G. R. Lester, and A. E. Williams, J. Phys. Chem., 63, 1861 (1959).
4. Klaus Bremann, "Mass Spectrometry: Organic Chemical Applications", McGraw-Hill, New York, NY, 1964, p. 103.
5. R. Geipert, Ber., 37, 664 (1904).
6. G. W. Clough, J. Chem. Soc., 89, 771 (1906).
7. That the decarbonylation is not sensitized by the solvent, acetone, is shown by the fact that the decarbonylation proceeds at the same rate in hexane, cyclohexane, acetic acid and diethyl ether.